FEDERAL HIGHWAY ADMINISTRATION, Federal Lands Highway

DAMAGE SURVEY REPORT

Title 23, Federal-Aid System/Federal Domain

Applicant: USDA Forest Service - Pisgah National Forest
County: Transylvania
State: NC
Inspection Date: 01/20/2005

Location of Damage (Route No., Name of Road, Mile Post and Map Grid): NFSR 5046, Lanning Ridge Rd., MP 0.10, MG 3B
ADT: 35

Bridge Data:
Road Data:
Classification: ML 3
Photographs #: 5046-0.10-01, 5046-0.10-02, 5046-0.10-03, 5046-0.10-04, 5046-0.10-05, 5046-0.10-06

Type: Concrete
Traveled Way Width: 12'
Surface Type: Concrete
Thickness: 8"

Description and Cause of Damage:
Existing Bridge is a series of three 7' X 7' concrete box culverts side by side. They acted as a screen during high flow and collected logs and debris on the upstream side causing the bridge to be overtopped and scoured around. This debris jam backed up sediment for several hundred feet upstream and remains at a higher elevation than the existing deck today on the upstream side.

Scope/Description of Repair:
- Remove and dispose of as much upstream bedload and debris as possible.
- Reconstruct north approach w/surfacing
- Reconstruct concrete deck and wingwalls.
- Armor north abutments and wingwalls with riprap
- Seed disturbed areas

COST ESTIMATE for EMERGENCY REPAIRS

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Item Description</th>
<th>Unit Price</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COST ESTIMATE for PERMANENT REPAIRS

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Item Description</th>
<th>Unit Price</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>HR</td>
<td>Track Hoe</td>
<td>$200.00</td>
<td>$16,000</td>
</tr>
<tr>
<td>1000</td>
<td>CY</td>
<td>Remove and Dispose of bedload and debris (100')</td>
<td>$25.00</td>
<td>$25,000</td>
</tr>
<tr>
<td>250</td>
<td>TON</td>
<td>Place Select Borrow to reconstruct north approach fill</td>
<td>$35.00</td>
<td>$8,750</td>
</tr>
<tr>
<td>90</td>
<td>TON</td>
<td>Place aggregate on north approach fill - NCDOT ABC stone</td>
<td>$25.00</td>
<td>$2,250</td>
</tr>
<tr>
<td>40</td>
<td>CY</td>
<td>Structural Concrete to construct wingwalls and repair deck on north end</td>
<td>$750.00</td>
<td>$30,000</td>
</tr>
<tr>
<td>250</td>
<td>TON</td>
<td>Pit Run Riprap</td>
<td>$50.00</td>
<td>$12,500</td>
</tr>
<tr>
<td>220</td>
<td>SY</td>
<td>Geotextile Fabric</td>
<td>$8.00</td>
<td>$1,760</td>
</tr>
<tr>
<td>800</td>
<td>SY</td>
<td>Seed all disturbed areas</td>
<td>$5.00</td>
<td>$4,000</td>
</tr>
<tr>
<td>200</td>
<td>LF</td>
<td>Silt fence</td>
<td>$5.00</td>
<td>$1,000</td>
</tr>
<tr>
<td>1</td>
<td>LS</td>
<td>Mobilization</td>
<td>$5,000.00</td>
<td>$5,000</td>
</tr>
</tbody>
</table>

Proposed:
- Force Account
- Contract
Total Emergency Repairs: $116,260

COST ESTIMATE for TOTAL PERMANENT REPAIRS

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Item Description</th>
<th>Unit Price</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposed:
- Force Account
- Contract
Total Permanent Repairs: $116,260

Identify Betterment, if any, and provide justification

- Preliminary Engineering: $17,439
- Construction Engineering: $11,626
- Right-of-Way
- Other: Bonding 2.5%: $2,907
TOTAL ESTIMATED COST (Emergency and Permanent Repairs): $148,232

Submitted By: Lynn L. Hicks, Forest Engineer
Signature: / X /
Date: July 6, 2005

Reviewed By:
Eligible: Ineligible:
Signature:
Date:

Recommended By:
Eligible: Ineligible:
Signature:
Date:

Attach Supplemental Sheets if necessary
Location of Damage
- **Route No., Name of Road, Mile Post and Map Grid:** NFSR 5046, Lanning Ridge Rd., MP 0.10, MG 3B
- **ADT:** 35

Bridge Data
- **Type:** Concrete
- **Traveled Way Width:** 12'
- **Surface Type:** Concrete
- **Thickness:** 8'
- **ID:** Unknown
- **Shoulder Width:** 0'
- **Pre-Storm Condition:** Good

Description and Cause of Damage
- **Scope/Description of Repair:**
 - Remove and dispose of remaining sections of old structure (May have historic values - check w/ Archy)
 - Install new single lane, single span, 60’ concrete bridge (channel width), at a 4’ to 6’ higher deck elevation than the previous bridge.
 - Construct new approaches, w/surfacing, to match the new bridge elevation (ramp up).
 - Armor abutments and wingwalls with riprap
 - Seed disturbed areas

COST ESTIMATE for EMERGENCY REPAIRS*

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Item Description</th>
<th>Unit Price</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COST ESTIMATE for PERMANENT REPAIRS*

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Item Description</th>
<th>Unit Price</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>HR</td>
<td>Track Hoe</td>
<td>$200.00</td>
<td>$8,000</td>
</tr>
<tr>
<td>1</td>
<td>LS</td>
<td>Remove and Dispose of remaining sections of old bridge</td>
<td>$5,000.00</td>
<td>$5,000</td>
</tr>
<tr>
<td>500</td>
<td>CY</td>
<td>Remove and Dispose of as much upstream bedload and debris as possible</td>
<td>$25.00</td>
<td>$12,500</td>
</tr>
<tr>
<td>840</td>
<td>SF</td>
<td>Install new 60 foot span, single lane concrete bridge</td>
<td>$210.00</td>
<td>$176,400</td>
</tr>
<tr>
<td>300</td>
<td>CY</td>
<td>Place Select Borrow for Approach Fills</td>
<td>$10.00</td>
<td>$3,000</td>
</tr>
<tr>
<td>90</td>
<td>TON</td>
<td>Place aggregate to surface new approach fills - NCDOT ABC stone</td>
<td>$25.00</td>
<td>$2,250</td>
</tr>
<tr>
<td>300</td>
<td>TON</td>
<td>Class 2 Riprap (>24")</td>
<td>$50.00</td>
<td>$15,000</td>
</tr>
<tr>
<td>200</td>
<td>SY</td>
<td>Geotextile Fabric</td>
<td>$6.00</td>
<td>$1,200</td>
</tr>
<tr>
<td>800</td>
<td>SY</td>
<td>Seed all disturbed areas</td>
<td>$5.00</td>
<td>$4,000</td>
</tr>
<tr>
<td>200</td>
<td>LF</td>
<td>Silt fence</td>
<td>$5.00</td>
<td>$1,000</td>
</tr>
<tr>
<td>1</td>
<td>LS</td>
<td>Mobilization</td>
<td>$5,000.00</td>
<td>$5,000</td>
</tr>
</tbody>
</table>

Total Emergency Repairs
- **Proposed:** Force Account Contract X Total
- **Total Permanent Repairs**

Identify Betterment, if any, and provide justification*
- Replacement of the existing triple box culvert with a bridge is a betterment. The economic analysis on the following page shows that the long-term benefits of the betterment outweigh the initial construction cost. The existing structure will have many recurring problems in the future, given the tremendous amount of bedload buildup in this unstable stream. Replacing with a single span bridge will avoid future reconstruction and reduce long-term resource impacts to fish & water.

TOTAL ESTIMATED COST
- **Emergency and Permanent Repairs:** $308,945
- **Preliminary Engineering:** $36,347
- **Construction Engineering:** $24,231
- **Right-of-Way:** $6,058
- **TOTAL ESTIMATED COST**

Submitted By
- **Name and Title:** Lynn L. Hicks, Forest Engineer
- **Signature:** / X /
- **Date:** July 6, 2005

Reviewed By
- **Name and Title:**
- **Signature:**
- **Date:**

Recommended By
- **Name and Title:**
- **Signature:**
- **Date:**

*Attach Supplemental Sheets if necessary
Location of Damage
(Route No., Name of Road, Mile Post and Map Grid)

NFSR-5046, Lanning Ridge Rd., MP 0.10, MG 3B

Sheet No: 3 of 6

DSR No: 5046-0.10

DSR No. NFNC 137-0.10

Betterment Justification

Repair & Restore 3-cell box culvert vs. Upgrade to 60' span concrete bridge

<table>
<thead>
<tr>
<th>ITEM</th>
<th>REPAIR IN-KIND</th>
<th>BETTERMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clean and Repair box culverts</td>
<td>Replace w/ Bridge</td>
</tr>
<tr>
<td>Track Hoe</td>
<td>HR 80 $200 $16,000</td>
<td>HR 40 $200 $8,000</td>
</tr>
<tr>
<td>Remove and Dispose of bedload and debris</td>
<td>CY 1000 $25 $25,000</td>
<td>CY 500 $25 $12,500</td>
</tr>
<tr>
<td>Place Select Borrow</td>
<td>TON 250 $35 $8,750</td>
<td>CY 300 $10 $3,000</td>
</tr>
<tr>
<td>Place aggregate - NCDOT ABC stone</td>
<td>TON 90 $25 $2,250</td>
<td>TON 90 $25 $2,250</td>
</tr>
<tr>
<td>Structural Concrete</td>
<td>CY 40 $750 $30,000</td>
<td></td>
</tr>
<tr>
<td>Pit Run Riprap</td>
<td>TON 250 $50 $12,500</td>
<td>TON 300 $50 $15,000</td>
</tr>
<tr>
<td>Class 2 Riprap</td>
<td>TON 250 $40 $10,000</td>
<td>TON 200 $40 $8,000</td>
</tr>
<tr>
<td>Geotextile Fabric</td>
<td>SY 220 $8 $1,760</td>
<td>SY 270 $8 $2,160</td>
</tr>
<tr>
<td>Seed all disturbed areas</td>
<td>SY 800 $5 $4,000</td>
<td>SY 800 $5 $4,000</td>
</tr>
<tr>
<td>Silt fence</td>
<td>LF 200 $5 $1,000</td>
<td>LF 200 $5 $1,000</td>
</tr>
<tr>
<td>Mobilization</td>
<td>LS 1 $5,000 $5,000</td>
<td>LS 1 $5,000 $5,000</td>
</tr>
<tr>
<td>Remove and Dispose of remainder of old structure</td>
<td></td>
<td>SF 840 $210 $176,400</td>
</tr>
<tr>
<td>Install single lane, concrete bridge (60' X 14')</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

$116,260

$242,310

Cost to repair damage in the future (w/betterment)

Assume $2000 every 5 years for minor damage (bridge life = 50 years)

Bridge: $400(P/A, 7%, 50) = $5,520

$5,520

Cost to repair damage in the future (w/o betterment)

Assume major reconstruction in 5 - 10 years @ $150,000 (structure nearing design life)

Assume major channel cleaning & structural repair every 5 years due to unstable channel and restrictive nature of triple box culvert design at $25,000 / 5yr

In-Kind: $150,000(P/F, 7%, 5) + $25,000(P/F, 7%, 5,10,15,...,50) = $166,943

$166,943

BENEFIT

(Difference in future repair costs over equal life)

$161,423

COST

(Additional Cost to repair the site as a result of adding the betterment)

$126,050

BENEFIT / COST

1.281

REMARKS

Economic benefits exceed costs over the long-term. Also, the existing structure will have many problems in the future due to its restrictive nature in this unstable stream. A single-span bridge will reduce long-term impacts to water quality, fish, and other aquatic organisms.
Applicant: USDA Forest Service - Pisgah National Forest
County: Transylvania
State: NC
Inspection Date: 01/20/2005
Location of Damage (Route No., Name of Road, Mile Post and Map Grid)
NFSR-5046, Lanning Ridge Rd., MP 0.10, MG 3B

Flow Down stream below bridge

Flow North Abutment Scoured out

Flow Elevation of debris is higher than bridge

Debris and bedload upstream - stacked up against bridge
Applicant: USDA Forest Service - Pisgah National Forest
County: Transylvania
State: NC
Inspection Date: 01/20/2005
ADT: 35

Location of Damage (Route No., Name of Road, Mile Post and Map Grid)
NFSR-5046, Lanning Ridge Rd., MP 0.10, MG 3B
<table>
<thead>
<tr>
<th>Applicant: USDA Forest Service - Pisgah National Forest</th>
<th>County: Transylvania</th>
<th>State: NC</th>
<th>Inspection Date: 01/20/2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location of Damage (Route No., Name of Road, Mile Post and Map Grid)</td>
<td></td>
<td></td>
<td>ADT: 35</td>
</tr>
<tr>
<td>NFSR-5046, Lanning Ridge Rd., MP 0.10, MG 3B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>